Immunology

T cells found to require rest and maintenance

T cells, biology textbooks teach us, are the soldiers of the immune system, constantly on the ready to respond to a variety of threats, from viruses to tumors. However, without rest and maintenance T cells can die and leave ...

Diseases, Conditions, Syndromes

Possible discovery of mechanism behind mysterious COVID-19 symptoms

In patients with serious and long-term COVID-19, disturbed blood coagulation has often been observed. Now, researchers at Linköping University (LiU), Sweden, have discovered that the body's immune system can affect the spike ...

Neuroscience

Toxic protein 'variant' may be the next target for ALS therapies

Scientists have long known that proteins can form harmful clusters in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). But a new study by Penn State researchers ...

Oncology & Cancer

Novel genetic experiment shrinks tough-to-treat cancer

In a novel experiment, a woman with advanced pancreatic cancer saw her tumors dramatically shrink after researchers in Oregon turbocharged her own immune cells, highlighting a possible new way to someday treat a variety of ...

Oncology & Cancer

New computer simulation cracks mystery of cancer drug resistance

Imatinib, better known as Gleevec, was hailed as a "miracle" cancer drug when it entered the market in the early 2000s. Though it has been highly successful at treating early-stage chronic myeloid leukemia (CML)—a rare ...

Neuroscience

Researchers link sugar-studded protein to Alzheimer's disease

In a bit of "reverse engineering" research using brain tissues from five people who died with Alzheimer's disease, Johns Hopkins Medicine researchers say they discovered that a special sugar molecule could play a key role ...

Genetics

Does herpes simplex virus change during transmission?

A new study helps explain how the virus that causes herpes might change during transmission between partners and over time during a long-term infection within a human host, which could have implications for future treatment ...

page1from8

Protein

Proteins(also known aspolypeptides) are organic compounds made of amino acids arranged in a linear chain. The amino acids in a polymer chain are joined together by the peptide bonds between the carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids, however in certain organisms the genetic code can include selenocysteine — and in certain archaea — pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification, which alter the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Proteins can also work together to achieve a particular function, and they often associate to form stable complexes.

像其他生物大分子如多边形accharides and nucleic acids, proteins are essential parts of organisms and participate in virtually every process within cells. Many proteins are enzymes that catalyze biochemical reactions and are vital to metabolism. Proteins also have structural or mechanical functions, such as actin and myosin in muscle and the proteins in the cytoskeleton, which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses, cell adhesion, and the cell cycle. Proteins are also necessary in animals' diets, since animals cannot synthesize all the amino acids they need and must obtain essential amino acids from food. Through the process of digestion, animals break down ingested protein into free amino acids that are then used in metabolism.

Proteins were first described and named by the Swedish chemist Jöns Jakob Berzelius in 1838. However, the central role of proteins in living organisms was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was a protein. The first protein to be sequenced was insulin, by Frederick Sanger, who won the Nobel Prize for this achievement in 1958. The first protein structures to be solved were hemoglobin and myoglobin, by Max Perutz and Sir John Cowdery Kendrew, respectively, in 1958. The three-dimensional structures of both proteins were first determined by x-ray diffraction analysis; Perutz and Kendrew shared the 1962 Nobel Prize in Chemistry for these discoveries. Proteins may be purified from other cellular components using a variety of techniques such as ultracentrifugation, precipitation, electrophoresis, and chromatography; the advent of genetic engineering has made possible a number of methods to facilitate purification. Methods commonly used to study protein structure and function include immunohistochemistry, site-directed mutagenesis, and mass spectrometry.

This text uses material fromWikipedia, licensed underCC BY-SA