Immunology

How antibody therapy affects the breadth of COVID mRNA vaccines

Nearly three years into the pandemic, many of us now carry antibodies against the virus—due to an infection or two, a few doses of mRNA vaccine, or a round of monoclonal-antibody treatment. But not all immune responses ...

Diseases, Conditions, Syndromes

Experts explain why rates of RSV are surging this year

Respiratory syncytial virus (RSV) is a very common virus, typically causing infection in children during the colder months. In most cases, RSV causes a mild illness, with symptoms similar to that of a regular cold.

ob欧宝直播nba

Old mice regain leg strength after antibody treatment

Muscle stem cells, the cells in muscle fibers that generate new muscle cells after injury or exercise, lose their potency with age. But a study by researchers at Stanford Medicine shows that old mice regain the leg muscle ...

page1from40

Antibody

Antibodies(also known asimmunoglobulins, abbreviatedIg) are gamma globulin proteins that are found in blood or other bodily fluids of vertebrates, and are used by the immune system to identify and neutralize foreign objects, such as bacteria and viruses. They are typically made of basic structural units—each with two large heavy chains and two small light chains—to form, for example, monomers with one unit, dimers with two units or pentamers with five units. Antibodies are produced by a kind of white blood cell called a plasma cell. There are several different types of antibody heavy chains, and several different kinds of antibodies, which are grouped into differentisotypesbased on which heavy chain they possess. Five different antibody isotypes are known in mammals, which perform different roles, and help direct the appropriate immune response for each different type of foreign object they encounter.

Although the general structure of all antibodies is very similar, a small region at the tip of the protein is extremely variable, allowing millions of antibodies with slightly different tip structures, or antigen binding sites, to exist. This region is known as the hypervariable region. Each of these variants can bind to a different target, known as an antigen. This huge diversity of antibodies allows the immune system to recognize an equally wide diversity of antigens. The unique part of the antigen recognized by an antibody is called an epitope. These epitopes bind with their antibody in a highly specific interaction, called induced fit, that allows antibodies to identify and bind only their unique antigen in the midst of the millions of different molecules that make up an organism. Recognition of an antigen by an antibodytagsit for attack by other parts of the immune system. Antibodies can also neutralize targets directly by, for example, binding to a part of a pathogen that it needs to cause an infection.

The large and diverse population of antibodies is generated by random combinations of a set of gene segments that encode different antigen binding sites (or抗体结合部位在这个领域),其次是随机突变的e antibody gene, which create further diversity. Antibody genes also re-organize in a process called class switching that changes the base of the heavy chain to another, creating a different isotype of the antibody that retains the antigen specific variable region. This allows a single antibody to be used by several different parts of the immune system. Production of antibodies is the main function of the humoral immune system.

This text uses material fromWikipedia, licensed underCC BY-SA